skip to main content


Search for: All records

Creators/Authors contains: "Natali, Susan M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In the Arctic, winter soil temperatures exert strong control over mean annual soil temperature and winter CO2emissions. In tundra ecosystems there is evidence that plant canopy influences on snow accumulation alter winter soil temperatures. By comparison, there has been relatively little research examining the impacts of heterogeneity in boreal forest cover on soil temperatures. Using seven years of data from six sites in northeastern Siberia that vary in stem density we show that snow-depth and forest canopy cover exert equally strong control on cumulative soil freezing degrees days (FDDsoil). Together snow depth and canopy cover explain approximately 75% of the variance in linear models of FDDsoiland freezingn-factors (nf; calculated as the quotient of FDDsoiland FDDair), across sites and years. Including variables related to air temperature, or antecedent soil temperatures does not substantially improve models. The observed increase in FDDsoilwith canopy cover suggests that canopy interception of snow or thermal conduction through trees may be important for winter soil temperature dynamics in forested ecosystems underlain by continuous permafrost. Our results imply that changes in Siberian larch forest cover that arise from climate warming or fire regime changes may have important impacts on winter soil temperature dynamics.

     
    more » « less
  2. Accurate representation of permafrost carbon emissions is crucial for climate projections, yet current Earth system models inadequately represent permafrost carbon. Sustained funding opportunities are needed from government and private sectors for prioritized model development. 
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  3. Abstract Purpose of Review

    While previously thought to be negligible, carbon emissions during the non-growing season (NGS) can be a substantial part of the annual carbon budget in the Arctic boreal zone (ABZ), which can shift the carbon balance of these ecosystems from a long-held annual carbon sink towards a net annual carbon source. The purpose of this review is to summarize NGS carbon dioxide (CO2) flux research in the ABZ that has been published within the past 5 years.

    Recent Findings

    We explore the processes and magnitudes of CO2fluxes, and the status of modeling efforts, and evaluate future directions. With technological advances, direct measurements of NGS fluxes are increasing at sites across the ABZ over the past decade, showing ecosystems in the ABZ are a large source of CO2in the shoulder seasons, with low, consistent, winter emissions.

    Summary

    Ecosystem carbon cycling models are being improved with some challenges, such as modeling below ground and snow processes, which are critical to understanding NGS CO2fluxes. A lack of representative in situ carbon flux data and gridded environmental data are leading limiting factors preventing more accurate predictions of NGS carbon fluxes.

     
    more » « less
  4. Abstract

    In the Arctic waterbodies are abundant and rapid thaw of permafrost is destabilizing the carbon cycle and changing hydrology. It is particularly important to quantify and accurately scale aquatic carbon emissions in arctic ecosystems. Recently available high-resolution remote sensing datasets capture the physical characteristics of arctic landscapes at unprecedented spatial resolution. We demonstrate how machine learning models can capitalize on these spatial datasets to greatly improve accuracy when scaling waterbody CO2and CH4fluxes across the YK Delta of south-west AK. We found that waterbody size and contour were strong predictors for aquatic CO2emissions, attributing greater than two-thirds of the influence to the scaling model. Small ponds (<0.001 km2) were hotspots of emissions, contributing fluxes several times their relative area, but were less than 5% of the total carbon budget. Small to medium lakes (0.001–0.1 km2) contributed the majority of carbon emissions from waterbodies. Waterbody CH4emissions were predicted by a combination of wetland landcover and related drivers, as well as watershed hydrology, and waterbody surface reflectance related to chromophoric dissolved organic matter. When compared to our machine learning approach, traditional scaling methods that did not account for relevant landscape characteristics overestimated waterbody CO2and CH4emissions by 26%–79% and 8%–53% respectively. This study demonstrates the importance of an integrated terrestrial-aquatic approach to improving estimates and uncertainty when scaling C emissions in the arctic.

     
    more » « less
  5. Abstract. Tundra environments are experiencing elevated levels of wildfire, and thefrequency is expected to keep increasing due to rapid climate change in theArctic. Tundra wildfires can release globally significant amounts ofgreenhouse gasses that influence the Earth's radiative balance. Here wedevelop a novel method for estimating carbon loss and the resultingradiative forcings of gaseous and aerosol emissions from the 2015 tundrawildfires in the Yukon–Kuskokwim Delta (YKD), Alaska. We paired burn depthmeasurements using two vegetative reference points that survived the fireevent – Sphagnum fuscum and Dicranum spp. – with measurements of local organic matter and soil carbonproperties to estimate total ecosystem organic matter and carbon loss. Weused remotely sensed data on fire severity from Landsat 8 to scale ourmeasured losses to the entire fire-affected area, with an estimated totalloss of 2.04 Tg of organic matter and 0.91 Tg of carbon and an average lossof 3.76 kg m−2 of organic matter and 1.68 kg m−2 of carbon in the2015 YKD wildfires. To demonstrate the impact of these fires on the Earth'sradiation budget, we developed a simple but comprehensive framework toestimate the radiative forcing from Arctic wildfires. We synthesizedexisting research on the lifetime and radiative forcings of gaseous andaerosol emissions of CO2, N2O, CH4, O3 and itsprecursors, and fire aerosols. The model shows a net positive cumulativemean radiative forcing of 3.67 W m−2 using representative concentration pathway (RCP) 4.5 and 3.37 W m−2using RCP 8.5 at 80 years post-fire, which was dominated by CO2emissions. Our results highlight the climate impact of tundra wildfires,which positively reinforce climate warming and increased fire frequencythrough the radiative forcings of their gaseous emissions. 
    more » « less
  6. Abstract. Fire is the dominant disturbance agent in Alaskan and Canadianboreal ecosystems and releases large amounts of carbon into the atmosphere.Burned area and carbon emissions have been increasing with climate change,which have the potential to alter the carbon balance and shift the regionfrom a historic sink to a source. It is therefore critically important totrack the spatiotemporal changes in burned area and fire carbon emissionsover time. Here we developed a new burned-area detection algorithm between2001–2019 across Alaska and Canada at 500 m (meters) resolution thatutilizes finer-scale 30 m Landsat imagery to account for land coverunsuitable for burning. This method strictly balances omission andcommission errors at 500 m to derive accurate landscape- and regional-scaleburned-area estimates. Using this new burned-area product, we developedstatistical models to predict burn depth and carbon combustion for the sameperiod within the NASA Arctic–Boreal Vulnerability Experiment (ABoVE) coreand extended domain. Statistical models were constrained using a database offield observations across the domain and were related to a variety ofresponse variables including remotely sensed indicators of fire severity,fire weather indices, local climate, soils, and topographic indicators. Theburn depth and aboveground combustion models performed best, with poorerperformance for belowground combustion. We estimate 2.37×106 ha (2.37 Mha) burned annually between 2001–2019 over the ABoVE domain (2.87 Mhaacross all of Alaska and Canada), emitting 79.3 ± 27.96 Tg (±1standard deviation) of carbon (C) per year, with a mean combustionrate of 3.13 ± 1.17 kg C m−2. Mean combustion and burn depthdisplayed a general gradient of higher severity in the northwestern portionof the domain to lower severity in the south and east. We also found larger-fire years and later-season burning were generally associated with greatermean combustion. Our estimates are generally consistent with previousefforts to quantify burned area, fire carbon emissions, and their drivers inregions within boreal North America; however, we generally estimate higherburned area and carbon emissions due to our use of Landsat imagery, greateravailability of field observations, and improvements in modeling. The burnedarea and combustion datasets described here (the ABoVE Fire EmissionsDatabase, or ABoVE-FED) can be used for local- to continental-scaleapplications of boreal fire science. 
    more » « less